Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(4): 1957-1965, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38435049

RESUMO

Rare-earth (RE) metal-organic frameworks (MOFs) synthesized in the presence of fluorine-donating modulators or linkers are an important new subset of functional MOFs. However, the exact nature of the REaXb core of the molecular building block (MBB) of the MOF, where X is a µ2 or 3-bridging group, remains unclear. Investigation of one of the archetypal members of this family with the stable fcu framework topology, Y-fum-fcu-MOF (1), using a combination of experimental techniques, including high-field (20 T) solid-state nuclear magnetic resonance spectroscopy, has determined two sources of framework disorder involving the µ3-X face-capping group of the MBB and the fumarate (fum) linker. The core of the MBB of 1 is shown to contain a mixture of µ3-F- and (OH)- groups with preferential occupation at the crystallographically different face-capping sites that result in different internally lined framework tetrahedral cages. The fum linker is also found to display a disordered arrangement involving bridging- or chelating-bridging bis-bidentate modes over the fum linker positions without influencing the MBB orientation. This linker disorder will, upon activation, result in the creation of Y3+ ions with potentially one or two additional uncoordinated sites possessing differing degrees of Lewis acidity. Crystallographically determined host-guest relationships for simple sorbates demonstrate the favored sorption sites for N2, CO2, and CS2 molecules that reflect the chemical nature of both the framework and the sorbate species with the structural partitioning of the µ3-groups apparent in determining the favored sorption site of CS2. The two types of disorder found within 1 demonstrate the complexity of fluoride-containing RE-MOFs and highlight the possibility to tune this and other frameworks to contain different proportions and segregations of µ3-face-capping groups and degrees of linker disorder for specifically tailored applications.

2.
Chemistry ; 29(21): e202203773, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36651661

RESUMO

Controlling aspects of the µ2 -X- bridging anion in the metal-organic framework Ga-MIL-53 [GaX(bdc)] (X- =(OH)- or F- , bdc=1, 4-benzenedicarboxylate) is shown to direct the temperature at which thermally induced breathing transitions of this framework occur. In situ single crystal X-ray diffraction studies reveal that substituting 20 % of (OH)- in [Ga(OH)(bdc)] (1) for F- to produce [Ga(OH)0.8 F0.2 (bdc)] (2) stabilises the large pore (lp) form relative to the narrow pore (np) form, causing a well-defined decrease in the onset of the lp to np transition at higher temperatures, and the adsorption/desorption of nitrogen at lower temperatures through np to lp to intermediate (int) pore transitions. These in situ diffraction studies have also yielded a more plausible crystal structure of the int-[GaX(bdc)] ⋅ H2 O phases and shown that increasing the heating rate to a flash heating regime can enable the int-[GaX(bdc)] ⋅ H2 O to lp-[GaX(bdc)] transition to occur at a lower temperature than np-[GaX(bdc)] via an unreported pathway.

3.
Angew Chem Int Ed Engl ; 61(51): e202212164, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36240785

RESUMO

The production of conjugated C4-C5 dienes from biomass can enable the sustainable synthesis of many important polymers and liquid fuels. Here, we report the first example of bimetallic (Nb, Al)-atomically doped mesoporous silica, denoted as AlNb-MCM-41, which affords quantitative conversion of 2-methyltetrahydrofuran (2-MTHF) to pentadienes with a high selectivity of 91 %. The incorporation of AlIII and NbV sites into the framework of AlNb-MCM-41 has effectively tuned the nature and distribution of Lewis and Brønsted acid sites within the structure. Operando X-ray absorption, diffuse reflectance infrared and solid-state NMR spectroscopy collectively reveal the molecular mechanism of the conversion of adsorbed 2-MTHF over AlNb-MCM-41. Specifically, the atomically-dispersed NbV sites play an important role in binding 2-MTHF to drive the conversion. Overall, this study highlights the potential of hetero-atomic mesoporous solids for the manufacture of renewable materials.


Assuntos
Alcadienos , Nióbio , Nióbio/química , Alumínio , Catálise
4.
Angew Chem Weinheim Bergstr Ger ; 134(51): e202212164, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38505214

RESUMO

The production of conjugated C4-C5 dienes from biomass can enable the sustainable synthesis of many important polymers and liquid fuels. Here, we report the first example of bimetallic (Nb, Al)-atomically doped mesoporous silica, denoted as AlNb-MCM-41, which affords quantitative conversion of 2-methyltetrahydrofuran (2-MTHF) to pentadienes with a high selectivity of 91 %. The incorporation of AlIII and NbV sites into the framework of AlNb-MCM-41 has effectively tuned the nature and distribution of Lewis and Brønsted acid sites within the structure. Operando X-ray absorption, diffuse reflectance infrared and solid-state NMR spectroscopy collectively reveal the molecular mechanism of the conversion of adsorbed 2-MTHF over AlNb-MCM-41. Specifically, the atomically-dispersed NbV sites play an important role in binding 2-MTHF to drive the conversion. Overall, this study highlights the potential of hetero-atomic mesoporous solids for the manufacture of renewable materials.

5.
Chem Sci ; 12(36): 12068-12081, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34667572

RESUMO

The separation of CO/N2 mixtures is a challenging problem in the petrochemical sector due to the very similar physical properties of these two molecules, such as size, molecular weight and boiling point. To solve this and other challenging gas separations, one requires a holistic approach. The complexity of a screening exercise for adsorption-based separations arises from the multitude of existing porous materials, including metal-organic frameworks. Besides, the multivariate nature of the performance criteria that needs to be considered when designing an optimal adsorbent and a separation process - i.e. an optimal material requires fulfillment of several criteria simultaneously - makes the screening challenging. To address this, we have developed a multi-scale approach combining high-throughput molecular simulation screening, data mining and advanced visualization, as well as process system modelling, backed up by experimental validation. We have applied our recent advances in the engineering of porous materials' morphology to develop advanced monolithic structures. These conformed, shaped monoliths can be used readily in industrial applications, bringing a valuable strategy for the development of advanced materials. This toolbox is flexible enough to be applied to multiple adsorption-based gas separation applications.

6.
Faraday Discuss ; 231(0): 112-126, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34190747

RESUMO

Atomic force microscopy has been used to determine the surface crystal growth of two isostructural metal-organic frameworks, [Zn2(ndc)2(dabco)] (ndc = 1,4-naphthalenedicarboxylate, dabco = 4-diazabicyclo[2.2.2]octane) (1) and [Cu2(ndc)2(dabco)] (2), from a core crystal of 1 for the former and a core-shell 1@2 crystal for the latter. AFM studies show that the surface terrace morphology expressed is a function of supersaturation, with steps parallel to both the <100> and <110> directions being expressed at higher supersaturations for 1, and steps parallel to the <110> direction being expressed solely at low supersaturation for 1 and 2. The crystal growth mechanisms for both 1 and 2 are essentially identical and involve 2D nucleation and spreading of 0.5 nm high metastable sub-layers of the stable extended 1.0 nm high growth terrace. Surface growth features of 2 indicate that there is an in-plane rotational epitaxy between 2 and 1 of 5.9(7)° that may be directed by the synthesis conditions and that intimate mixtures of different domains of ±5.9(7)° rotational epitaxy are not observed to coexist on the several micron scale on the shell surface. The results provide potential routes and understanding to fabricate MOFs of different crystal forms and defect structures, which are necessary for future advanced function of these versatile materials.

7.
Nat Commun ; 12(1): 822, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547288

RESUMO

Optimising the balance between propene selectivity, propene/ethene ratio and catalytic stability and unravelling the explicit mechanism on formation of the first carbon-carbon bond are challenging goals of great importance in state-of-the-art methanol-to-olefin (MTO) research. We report a strategy to finely control the nature of active sites within the pores of commercial MFI-zeolites by incorporating tantalum(V) and aluminium(III) centres into the framework. The resultant TaAlS-1 zeolite exhibits simultaneously remarkable propene selectivity (51%), propene/ethene ratio (8.3) and catalytic stability (>50 h) at full methanol conversion. In situ synchrotron X-ray powder diffraction, X-ray absorption spectroscopy and inelastic neutron scattering coupled with DFT calculations reveal that the first carbon-carbon bond is formed between an activated methanol molecule and a trimethyloxonium intermediate. The unprecedented cooperativity between tantalum(V) and Brønsted acid sites creates an optimal microenvironment for efficient conversion of methanol and thus greatly promotes the application of zeolites in the sustainable manufacturing of light olefins.

8.
Chem Sci ; 12(3): 1126-1146, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34163880

RESUMO

A Monte Carlo crystal growth simulation tool, CrystalGrower, is described which is able to simultaneously model both the crystal habit and nanoscopic surface topography of any crystal structure under conditions of variable supersaturation or at equilibrium. This tool has been developed in order to permit the rapid simulation of crystal surface maps generated by scanning probe microscopies in combination with overall crystal habit. As the simulation is based upon a coarse graining at the nanoscopic level features such as crystal rounding at low supersaturation or undersaturation conditions are also faithfully reproduced. CrystalGrower permits the incorporation of screw dislocations with arbitrary Burgers vectors and also the investigation of internal point defects in crystals. The effect of growth modifiers can be addressed by selective poisoning of specific growth sites. The tool is designed for those interested in understanding and controlling the outcome of crystal growth through a deeper comprehension of the key controlling experimental parameters.

9.
Chem Sci ; 10(41): 9571-9575, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32055330

RESUMO

Determining the effect of severe lattice mismatch on the crystal growth mechanism and form of epitaxially grown materials is vital to understand and direct the form and function of such materials. Herein, we report the use of atomic force microscopy to reveal the growth of a shell metal-organic framework (MOF) on all faces of a core MOF that has similar a, b-lattice parameters but a ∼32% mismatch in the c-lattice parameter. The work shows the mechanism through which the shell MOF overcomes the core terrace height mismatch depends on that mismatch being reduced before overgrowth of continuous shell layers can occur. This reduction is achieved via a process of growth of non-continuous shell layers that are terminated by terrace edges of the core. The crystal form of the shell MOF is heavily influenced by the lattice mismatch which hinders continuous spreading of the interfacial and subsequent shell layers on some facets. The results exemplify the crystal growth versatility of MOFs to accommodate large lattice mismatch, to house many more functional defects in a core-shell MOF than either of the component MOFs, and has broader implications for engineering lattice-mismatched core-shell materials in general.

10.
Nature ; 544(7651): 456-459, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28371799

RESUMO

Understanding and predicting crystal growth is fundamental to the control of functionality in modern materials. Despite investigations for more than one hundred years, it is only recently that the molecular intricacies of these processes have been revealed by scanning probe microscopy. To organize and understand this large amount of new information, new rules for crystal growth need to be developed and tested. However, because of the complexity and variety of different crystal systems, attempts to understand crystal growth in detail have so far relied on developing models that are usually applicable to only one system. Such models cannot be used to achieve the wide scope of understanding that is required to create a unified model across crystal types and crystal structures. Here we describe a general approach to understanding and, in theory, predicting the growth of a wide range of crystal types, including the incorporation of defect structures, by simultaneous molecular-scale simulation of crystal habit and surface topology using a unified kinetic three-dimensional partition model. This entails dividing the structure into 'natural tiles' or Voronoi polyhedra that are metastable and, consequently, temporally persistent. As such, these units are then suitable for re-construction of the crystal via a Monte Carlo algorithm. We demonstrate our approach by predicting the crystal growth of a diverse set of crystal types, including zeolites, metal-organic frameworks, calcite, urea and l-cystine.


Assuntos
Cristalização , Modelos Químicos , Algoritmos , Carbonato de Cálcio/química , Cistina/química , Cinética , Método de Monte Carlo , Ureia/química , Zeolitas/química
11.
Angew Chem Int Ed Engl ; 56(20): 5527-5530, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28407353

RESUMO

The {Cr8 } metallacrown [CrF(O2 Ct Bu)2 ]8 , containing a F-lined internal cavity, shows high selectivity for CO2 over N2 . DFT calculations and absorption studies support the multiple binding of F-groups to the C-center of CO2 (C⋅⋅⋅F 3.190(9)-3.389(9) Å), as confirmed by single-crystal X-ray diffraction.

12.
Membranes (Basel) ; 7(1)2017 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-28208658

RESUMO

Metal-organic frameworks (MOFs) were supported on polymer membrane substrates for the fabrication of composite polymer membranes based on unmodified and modified polymer of intrinsic microporosity (PIM-1). Layers of two different MOFs, zeolitic imidazolate framework-8 (ZIF-8) and Copper benzene tricarboxylate ((HKUST-1), were grown onto neat PIM-1, amide surface-modified PIM-1 and hexamethylenediamine (HMDA) -modified PIM-1. The surface-grown crystalline MOFs were characterized by a combination of several techniques, including powder X-ray diffraction, infrared spectroscopy and scanning electron microscopy to investigate the film morphology on the neat and modified PIM-1 membranes. The pure gas permeabilities of He, H2, O2, N2, CH4, CO2 were studied to understand the effect of the surface modification on the basic transport properties and evaluate the potential use of these membranes for industrially relevant gas separations. The pure gas transport was discussed in terms of permeability and selectivity, highlighting the effect of the MOF growth on the diffusion coefficients of the gas in the new composite polymer membranes. The results confirm that the growth of MOFs on polymer membranes can enhance the selectivity of the appropriately functionalized PIM-1, without a dramatic decrease of the permeability.

13.
Angew Chem Int Ed Engl ; 55(31): 9075-9, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27276023

RESUMO

Identifying the form and role of the chemical species that traverse the stages of crystallization is critical to understanding the formation process of coordination polymers. Herein, we report the combined use of in situ atomic force microscopy and mass spectrometry to identify preformed, complex, cadmium 2-ethylimidazole containing solution species in the growth solution of the cadmium 2-ethylimidazolate metal-organic framework CdIF-4, and show that they are critical in the surface nucleation for the crystal growth of this material. Surface nucleation appears to be instigated by these [Cdx (CH3 CO2 )y (C5 H7 N2 /C5 H8 N2 )z ]-containing solution species and not by sole addition of the ligand molecules. The CH3 CO2 (-) or Cd(CH3 CO2 )2 groups of the former are substituted subsequently as the framework growth proceeds. Our greater understanding of such solution species and their role in crystallization will guide future syntheses of designed functional coordination polymers.

14.
Chem Commun (Camb) ; 51(28): 6218-21, 2015 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-25761232

RESUMO

Defects in solids are often the source of functional activity, the trigger for crystal growth and the seat of instability. Screw dislocations are notoriously difficult to study by electron microscopy. Here we decipher the complex anatomy of one such defect in the industrially important nanoporous catalyst SAPO-18 by atomic force microscopy.

15.
Chemistry ; 20(33): 10446-50, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25042288

RESUMO

Top-down synthesis of 2D materials from a parent 3D zeolite with subsequent post-synthetic modification is an interesting method for synthesis of new materials. Assembly, disassembly, organisation, reassembly (ADOR) processes towards novel materials based on the zeolite UTL are now established. Herein, we present the first study of these materials by atomic force microscopy (AFM). AFM was used to monitor the ADOR process through observation of the changes in crystal surface and step height of the products. UTL surfaces were generally complex and contained grain boundaries and low-angle intergrowths, in addition to regular terraces. Hydrolysis of UTL to IPC-1P did not have adverse effects on the surfaces as compared to UTL. The layers remained intact after intercalation and calcination forming novel materials IPC-2 and IPC-4. Measured step heights gave good correlation with the X-ray diffraction determined d200 -spacing in these materials. However, swelling gave rise to significant changes to the surface topography, with significantly less regular terrace shapes. The pillared material yielded the roughest surface with ill-defined surface features. The results support a mechanism for the majority of these materials in which the UTL layers remain intact during the ADOR process as opposed to dissolving and recrystallising during each step.

16.
Chemistry ; 19(25): 8236-43, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23625869

RESUMO

A new zeolitic-imidazolate framework (ZIF), [Zn(imidazolate)2-x(benzimidazolate)x], that has the zeolite A (LTA) framework topology and contains relatively inexpensive organic linkers has been revealed using in situ atomic force microscopy. The new material was grown on the structure-directing surface of [Zn(imidazolate)1.5(5-chlorobenzimidazolate)0.5] (ZIF-76) crystals, a metal-organic framework (MOF) that also possesses the LTA framework topology. The crystal growth processes for both [Zn(imidazolate)2-x(benzimidazolate)x] and ZIF-76 were observed using in situ atomic force microscopy; it is the first time the growth process of a nanoporous material with the complex zeolite A (LTA) framework topology has been monitored temporally at the nanoscale. The results reveal the crystal growth mechanisms and possible surface terminations on the {100} and {111} facets of the materials under low supersaturation conditions. Surface growth of these structurally complex materials was found to proceed through both "birth-and-spread" and spiral crystal-growth mechanisms, with the former occurring through the nucleation and spreading of metastable and stable sub-layers reliant on the presence of non-framework species to bridge the framework during formation. These results support the notion that the latter process may be a general mechanism of surface crystal growth applicable to numerous crystalline nanoporous materials of differing complexity and demonstrate that the methodology of seeded crystal growth can be used to discover previously unobtainable ZIFs and MOFs with desirable framework compositions.

18.
Chemistry ; 18(48): 15406-15, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23055448

RESUMO

Crystal growth of the metal-organic framework MOF-5 was studied by atomic force microscopy (AFM) for the first time. Growth under low supersaturation conditions was found to occur by a two-dimensional or spiral crystal growth mechanism. Observation of developing nuclei during the former reveals growth occurs through a process of nucleation and spreading of metastable and stable sub-layers revealing that MOFs may be considered as dense phase structures in terms of crystal growth, even though they contain sub-layers consisting of ordered framework and disordered non-framework components. These results also support the notion this may be a general mechanism of surface crystal growth at low supersaturation applicable to crystalline nanoporous materials. The crystal growth mechanism at the atomistic level was also seen to vary as a function of the growth solution Zn/H(2)bdc ratio producing square terraces with steps parallel to the <100> direction or rhombus-shaped terraces with steps parallel to the <110> direction when the Zn/H(2)bdc ratio was >1 or about 1, respectively. The change in relative growth rates can be explained in terms of changes in the solution species concentrations and their influence on growth at different terrace growth sites. These results were successfully applied to the growth of as-synthesized cube-shaped crystals to increase expression of the {111} faces and to grow octahedral crystals of suitable quality to image using AFM. This modulator-free route to control the crystal morphology of MOF-5 crystals should be applicable to a wide variety of MOFs to achieve the desired morphological control for performance enhancement in applications.

19.
J Am Chem Soc ; 134(31): 13066-73, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22770510

RESUMO

Microporous zincophosphate sodalite crystal growth has been studied in situ by atomic force microscopy. This simple model system permits an in depth investigation of some of the axioms governing crystal growth of nanoporous framework solids in general. In particular, this work reveals the importance of considering the growth of a framework material as the growth of a dense phase material where the framework structure, nonframework cations, and hydrogen-bonded water must all be considered. The roles of the different components of the structure, including the role of strict framework ordering, are disentangled, and all of the growth features, both crystal habit and nanoscopic surface structure, are explained according to a simple set of rules. The work describes, for the first time, both ideal growth and growth leading to defect structures on all of the principal facets of the sodalite structure. Also, the discovery of the presence of anisotropic friction on a framework material is described.

20.
Dalton Trans ; 41(14): 3869-78, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22183082

RESUMO

Nanoporous metal organic frameworks (MOFs) form one of the newest families of crystalline nanoporous material that is receiving worldwide attention. Successful use of MOFs for application requires not only development of new materials but also a need to control their crystal properties such as size, morphology, and defect concentration. An understanding of the crystal growth processes is necessary in order to aid development of routes to control such properties of the crystallites. In this Perspective article we aim to provide a short overview of the current work and understanding concerning the nucleation and growth processes of nanoporous MOFs and how this work may be expanded upon to further our comprehension of this subject. We also focus heavily on in situ studies that provide real time information on the developing materials and generally provide the most conclusive findings on the processes under investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...